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ABSTRACT

The formation of e-health has stimulated the development of intelligent systems that provide information support for medical decisions. These systems are used to make a diagnosis, choose a more effective treatment method, predict, search for suitable conditions (precedents), control and schedule therapy, recognize and interpret images, monitor the clinical-pharmacological properties (toxicity) of drugs, etc. The basis of these systems are diseases in the specific subject area of ​​medicine, their possible causes, development period, clinical manifestations, observed signs, symptoms, etc. Successes achieved in the creation of such systems that prevent errors in making medical decisions, have necessitated the creation of a system for diagnosis and prediction of hepatocellular carcinoma (HCC), known as liver cancer, which is the third leading cause of lethal cancer in the world.

HCC is characterized by a set of clinical manifestations of critical conditions, each of which, in turn, is defined by a set of clinical signs and data. The analysis of these data shows that in the conditions of information abundance, the physician has to make a decision by referring to a part of the obtained information. As a result, errors occur in physicians’ decisions determined by certain combinations of a vast number of indicators and clinical signs. To predict HCC based on such numerous, diverse and heterogeneous unstructured data, preference is given to the method of artificial intelligence, i.e., machine learning. Machine learning enables data processing, presentation, and making predictions based on the results obtained.

This article explores the possibility of applying machine learning algorithms to create an HCC prediction system and solves the problem of selecting the best algorithm. The study conducted in this regard uses the HCC Dataset database taken from Kaggle platform, and 49 features/attribute data of 165 patients are referenced. The experiment conducted for the prediction of HCC is presented in stages.

In the first stage, pre-processing (or the process of database cleaning) is performed in order to bring the data into a uniform form, while the cleaning of unrelated and scattered data is implemented with the direct involvement of the user. Libraries Scikit-learn, Pandas, NumPy, etc. are used in the Jupiter programming environment to make the database beneficial and simplify data processing. Correlation heatmaps are used to find both linear and non-linear relationships between variables. Min-max scaling is applied to one or more feature columns to normalize the data.

The second step analyzes all features present in the database, determines their types and target class.

The third step presents the criteria (precision, recall, F1-ScoreF, accuracy) for evaluating the performance of machine learning algorithms used for classification in the database and their determination formulas.

Finally, the fourth step determines the performance evaluation criteria with the application of Support Vector Machine, Random Forest, Logistic Regression machine learning algorithms. Jupiter software in Anaconda environment is used to analyze the result. Different classifiers are selected to achieve results accuracy and also to see how the data performed on different classifiers. Referring to the comparative analysis of the obtained results, the method with the best results is selected for the creation of the HCC prediction system. The Random Forest algorithm is estimated to show highest accuracy according to the criteria of the error matrix.

Thus, it is justified to use the Random Forest machine learning algorithm to improve the accuracy of forecasts in the creation of an intelligent system of HCC prediction.

Keywords: hepatocellular carcinoma, intelligent prediction system, machine learning algorithm, confusion matrix, accuracy criterion. 
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XÜLASƏ

Məqalədə qaraciyər xərçəngi kimi tanınan, xərçəng səbəbindən ölənlərin sayına görə dünyada üçüncü yeri tutan hepatosellular karsinomanın (HSK) proqnozlaşdırılması sisteminin yaradılması üçün maşın təlimi alqoritmlərinin tətbiqi imlkanları araşdırılmış, ən yaxşı nəticə göstərən alqoritmin seçilməsi məsələsi həll edilmişdir. Elektron tibbin formalaşması, tibbi qərarların qəbul edilməsində həkim səhvlərinin qarşısının alınması üçün intellektual sistemlərin yaradılması və bu istiqamətdəki uğurlar HSK-nın ilkin diaqnozu və proqnozlaşdırılması üçün süni intellektə əsaslanan metodların tətbiqini aktuallaşdırmışdır. Bu məqsədlə aparılmış tədqiqatda Kaggle platformasından götürülmüş HCC Dataset verilənlər bazasından, Jupiter proqramlaşdırma mühitində scikit-learn, Pandas, NumPy və s. kitabxanalardan istifadə edirmiş, 165 pasiyentin 49 xüsusiyyət/atribut verilənlərinə istinad edilmişdir. HSK-nın proqnozlaşdırılması üçün tətbiq edilmiş Logistic Regression, Support Vector Machine, Random Forest kimi maşın təlimi alqoritmlərinin nəticələri təqdim olunmuşdur. Eksperimentlərin nəricələrinin müqayisəli analizinə istinad eməklə HSK-nın proqnozlaşdırılması sisteminin yaradılması üçün ən yaxşı nəticə göstərən metod seçilmişdir.
Açar sözlər: hepatocellular carcinoma, intellektual proqnoz sistemi, maşın təlimi alqoritmləri, xəta matrisi, dəqiqlik meyarı.
GİRİŞ 
Hazırda elektron tibbin formalaşması tibbi qərarların qəbul olunmasına informasiya dəstəyi göstərən sistemlərin inkişafına təkan vermişdir. Xəstəliklərin müxtəlif variantlarda təzahür etməsi, diaqnoz və müalicənin birmənalı meyarlarının mövcud olmaması; hər bir xəstəliyin çoxlu sayda giriş verilənlərinə əsaslanması; xəstəliyi xarakterizə edən göstəricilərin keyfiyyət və kəmiyyət xarakterli, əsasən qeyri-dəqiq olması həkim qərarlarının qəbulunda mümkün səhvlərin qarşısının alınması üçün intellektual metodların tətbiqini zərirətə çevirmişdir [1]. Təcrübəli həkim konkret situasiyada analoji vəziyyətləri nəzərə alaraq öz mülahizələrini təsdiq etmək üçün baza məlumatlarını şəxsi təcrübəsi ilə uyğunlaşdırır, xəstəliyin atipik formalarını müəyyən edir, prosesin dinamikasını proqnozlaşdırır. Bu, həkimin bilik və empirik təcrübəsinə əsaslanan müalicə-diaqnostik qərarların qəbul edilməsi üzrə məntiqi mühakimələrin imitasiyasının vacibliyi məsələsini aktuallaşdırır. Məlumdur ki, təcrübəli həkim-ekspertlərin biliklərinin toplanması, saxlanması, manipulyasiyası, eləcə də, hər bir konkret verilənlər toplusu üzrə xəstəliyin müəyyən edilməsi və adekvat qərarların qəbul edilməsi üçün daha səmərəli vasitə biliklərə əsaslanan intellektual sistemlərdir (tibbi qərarların qəbulunu dəstəkləyən sistemlər). Bu sistemlərin əsasını tibbin konkret predmet sahəsində olan xəstəliklər, onların mümkün səbəbləri, inkişaf müddəti, kliniki təzahürləri, müşahidə olunan əlamətləri, simptomları və s. təşkil edir. Bu sistemlər diaqnoz qoyulması, daha effektiv müalicə üsulunun seçilməsi, proqnozlaşdırma, uyğun vəziyyətlərin (presedentlərin) axtarışı, terapiyaya nəzarət və planlaşdırma, təsvirlərin tanınması və interpretasiyası, dərman vasitələrinin kliniki-farmakoloji xüsusiyyətlərinin (toksikliyinin) monitorinqi və s. məsələlərin həllində tətbiq olunur.
Hazırkı məqalədə də qaraciyər xərçəngi kimi tanınan hepatosellular karsinomanın (HSK) ilkin diaqnozu və proqnozlaşdırılması üçün intellektual sistemin yaradılması istiqamətində aparılan tədqiqatda maşın təlimi alqoritmlərinin tətbiqi ilə bağlı araşdırmaların nəticələri verilmiş, daha yaxşı nəticə göstərən alqoritmin müəyyənləşdirilməsi üçün aparılmış eksperimentlərin nəticələri təqdim olunmuşdur.

Məqsəd

Problemin aktuallığı və əlaqəli tədqiqatlar

Ümumdünya Səhiyyə Təşkilatının hesabatına görə, xərçəng xəstəliyi dünya üzrə əsas ölüm səbəbi kimi qiymətləndirilir və 2020-ci ildə bu səbəbdən 10 milyona yaxın ölüm hadisəsi qeydə alınmışdır (2(.  Xərçəng səbəbindən ölənlərin sayına görə 2-ci yeri qaraciyər xərçəngi tutur və onun 80%-ni (ABŞ-da bu göstərici 90% təşkil edir) HSK təşkil edir (3, 4(. Bu şiş xəstəliyi ən çox 60-70 yaşlarında və adətən kişilərdə (qadınlardan 2,5 dəfə çox) rast gəlinir, yüksək riskli ölkələrdə isə daha erkən, yəni 30-40 yaşlarında müşahidə edilir. HSK rastgəlmə tezliyinə görə xərçəng xəstəlikləri arasında 5-6-cı yeri, xərçənglə bağlı ölüm səbəbləri arasında isə üçüncü yeri turur (5(. Hər il dünyada təxminən bir milyona yaxın insanda HSK tapılır (3, 5(. O, adətən xroniki qaraciyər xəstəliyi kimi təzahür edir və ya sirozu olan xəstələrdə müşahidə edilir. Son məlumatlara görə, HSK dünyada daha geniş yayılmış ölümcül xərçəng növlərindən biridir və hər il 600.000-dən çox insanın ölümünə səbəb olur [6, 7].
HSK-nın yaranmasına səbəb olan risk faktorları kimi genetika, yaş, cins, kimyəvi maddələr, hormonlar və qidalanma göstəriir. HSK-da şiş hüceyrələri hepatositlərə bənzəyir, lakin dərəcələrinə görə onlar bir-birlərindən fərqlənirlər. HSK-nın şiş hüceyrələri qan damarlarına sızmağa və böyüməyə meyllidir. Digər xərçənglər kimi, HCC-də də şiş hüceyrələri müxtəlif mərhələlərdə yavaş-yavaş böyüyür və erkən aşkar olunarsa, daha effektiv müalicə oluna bilər. Qaraciyər xərçənginin proqnoz və müalicəsi üsulunun seçilməsi üçün əsasən şişin yayılma dərəcəsinə istinad edilir, bu məqsədlə bir sıra təsnifatlardan istifadə edilir. Lakin təcrübə göstərir ki, digər şişlərdən fərqli olaraq, HSK-da şişin yayılma dərəcəsi ilə yanaşı, həm də qaraciyərin funksional vəziyyəti, orqanizmin ümumi halı da proqnozda və müalicə üsulunun seçilməsində  önəmli rol oynayır. Ona görə də son illər şişin yayılmasını, qaraciyər parenximasını və ümumi vəziyyəti nəzərə alan təsnifatlar işlənib hazırlanmışdır (3(. 
HSK ilə əlaqəli verilənlərin analizi göstərir ki, informasiya bolluğu şəraitində həkim bu informasiyanın bir qisminə istinad etməklə qərar qəbul etməli olur. Nəticədə çoxlu sayda göstəricilərin, kliniki əlamətlərin müəyyən kombinasiyaları ilə təyin edilən həkim qərarlarında nöqsanlar yaranır və bu HSK-nın diaqnostikası və proqnozlaşdırılması üçün süni intellekt metodlarının tətbiqini, kliniki qərarların qəbuluna dəstək sistemlərinin yaranmasını şərtləndirmişdir.
Hazırda elmi ədəbiyyatda qaraciyər xəstəliklərinin aşkarlanması, diaqnostikası və müalicəsi üçün intellektual sistemlərin işlənilməsi istiqamətində tədqiqatlara rast gəlinir  (8-10(. (5(-də HSK-nın proqnozlaşdırılması üçün maşın təlimi və dərin təlim metodlarından istifadənin əhəmiyyəti göstərilmişdir. Müəlliflərin təklif etdiyi HSK-nın mərhələsinin təyini üçün qeyri-səlis qaydalara əsaslanan sistemin işlənilməsi metodikası (11(-də, bu sistemin bilik bazasının formalaşdırılması prinsipləri (12(-də təqdim edilmişdir. 
Bu istiqamətdə müəlliflərin apardıqları tədqiqatın növbəti mərhələsi qaraciyər xərçənginin proqnozlaşdırılması sisteminin işlənilməsidir və hazırkı məqalədə maşın təlimi alqoritmlərinin tətbiqi ilə HSK-nın proqnozlaşdırılması məsələsinin həllinə baxılmış, ən yüksək nəticə göstərən alqoritmin seçilməsidir üzrə alınan nəticələr təqdim edilmişdir. Bu yanaşma pasiyentlərin xəstəliklə bağlı toplanmış məlumatları əsasında yaradılmış bazalardan istifadə etməklə proqnoz vermək üçün nəzərdə tutulmuşdur, xəstəliklə bağlı dəqiq və vaxtında qərarların qəbul edilməsində, xəstəliyin qarşısının alınmasında həkumlərə dəstək göstərə bilər. 

Maşın təlimi, verilənlərin emal edilməsinə, təqdim edliməsinə və alınan nəticələr əsasında proqnozlaşdırmanı yerinə yetirməyə imkan verir. Bir çox tədqiqatçılar maşın təlimini  aşağıdakı kimi təsnif edirlər:

1) əvvəlki məlumatlardan istifadə etməklə təlim və ya öyrənmək (Training or Learning from past data);

2) təsnifat, proqnozlaşdırma və s. kimi tapşırıqları yerinə yetirmək;

3) əvvəlki və indiki məlumatlardan əldə edilmiş təcrübə əsasında performansı artırmaq.

 Verilənlər bazasına toplanmış məlumatlara əsaslanaraq HSK-nı proqnozlaşdırmaq üçün nəzarət edilən maşın təlimi alqoritmlərindən istifadə edilmişdir.

[13]-də data miningdən istifadə etdəklə diabet xəstəliyinin proqnozlaşdırılması təklif edilmişdir. Pasiyentin xəstəliyini proqnozlaşdırmaq üçün K-nearest neighbours (KNN) və Naive Bayes kimi iki klassifikator alqoritmindən istifadə edilmişdir. Proqnozlaşdırma üçün 2000 diabet xəstəsi haqqında məlumata malik bazaya istinad edilmiş, KNN və Naive Bayes alqoritmlərindən istifadə edərək proqnozlaşdırmada yüksək nəticə almağa nail olunmuşdur.. Qeyd edək ki, istinad edilən bazaların daha çox məlumata malik olması təklif edilən modelin dəqiqliyinin və səmərəliliyinin artırılmasında mühüm məqamdır.

 [2, 5]-də təsvir edilən tədqiqatlartda maşın təlimi və genetik alqoritmlərdən istifadə edərək müxtəlif növ xəstəliklərin proqnozunun təkmilləşdirilməsi imkanlarına baxılmışdır. Bu məqsədlə müxtəlif  növ xəstəliklərin xüsusiyyətlərini xarakterizə edən verilənlərdən ibarət bazalara istinad edirmişdir. Bu bazalar, adətən, həm strukturlaşdırılmış, həm də strukturlaşdırılmamış verilənlərdən ibarət olur.

Verilənlər toplusunda bir-biri ilə əlaqəli olmayan xüsusiyyətləri tapmaq üçün genetik alqoritmlərdən istifadə edilir və Recurrent Neural Network (RNN) vasitəsilə strukturlaşdırılmamış verilənlərdən lazımi xüsusiyyətlər çıxarılır (başqa sözlə desək, baza təmizlənir). Əldə edilən yeni bazaya Support Vector Machine (SVM), Random Forest, Logistic Regression və s. klassifikatorlarına əsaslanan maşın təlimi metodlarını tətbiq etməklə sistemin düzgünlüyü yoxlanılır.

Beləliklə, hazırkı məqalənin məqsədi HSK-nın ilkin diaqnozu və proqnozlaşdırılması məsələsinin həlli üçün maşın təlimi alqoritmlərinin tətbiqi imkanının araşdırılması və ən yaxşı alqoritmin seçilməsidir.
Metodlar

HSK-nın proqnozlaşdırılması üçün maşın təlimi alqoritmlərinin tətbiqi
HCC-nin proqnozlaşdırıılmasında maşın təlimi alqoritmlərinin tətbiqi üçün ilk növbədə müvafiq verilənlər bazası seçilmişdir. Bu məqsədlə Kaggle şirkətinin HCC Dataset [7, 13] adlı açıq verilənlər bazasından istifadə olunmuşdur. Verilənlər bazası Portuqaliya Universiteti Xəstəxanasında HSK-dan əziyyət çəkən 165 klinik xəstənin məlumatları əsasında formalaşdırılmışdır. Verilənlər bazasında Qaraciyərin Tədqiqi üzrə Avropa Assosiasiyası – Xərçəngin Tədqiqi və Müalicəsi üzrə Avropa Təşkilatı (eng. European Association for the Study of the Liver - European Organisation for Research and Treatment of Cancer) tərəfindən tövsiyə edilən 49 xüsusiyyət (kliniki əlamət) yer almışdır (şəkil 1). 
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Şəkil 1. Qaraciyər xərçəngi xəstəliyi üçün verilənlər bazası

Beləliklə, maşın təlimi alqoritmlərinin tətbiqi ilə HSK-nın proqnozlaşdırılması üçün keçirilən eksperiment aşağıdakı addımlarlar üzrə həyata keçirilmişdir:

Birinci addım: verilənlərin ilkin emalı. Bu addımda seçilmiş verilənlər bazasında bir-biri ilə əlaqəli olmayan verilənlərin olması yoxlanılmış və müəyyən hissələrdə verilənlərin səpələnmiş olduğu müəyyənləşdirilmişdir. Həmin verilənlər şəkil 2-də verilmişdir: 

[image: image2.png]1 liver_df.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 204 entries, © to 203

Data columns (total 5@ columns):

#  Column Non-Null Count Dtype

e Gender 204 non-null intea
1 Symptoms 24 non-null int6a
2 Alcohol 204 non-null intea
3 HBsAg 24 non-null intea
4 HBeAg 24 non-null intea
5  HBcAb 204 non-null intea
6  HCVAb 204 non-null intea
7  Cirrhosis 24 non-null intea
8  Endemic 204 non-null intea
o  sSmoking 204 non-null intea
1@ Diabetes 204 non-null intea
11 Obesity 204 non-null intea
12 Hemochro 284 non-null intea
13 AHT 204 non-null intea
14 CRI 204 non-null intea
15 HIV 284 non-null intea
16 NASH 204 non-null intea
17 varices 204 non-null intea
18 Spleno 284 non-null intea
19 PHT 204 non-null intea
2e PVT 204 non-null intea
21 Metastasis 284 non-null intea
22 Hallmark 204 non-null intea
23 Age 204 non-null intea
24 Grams_day 284 non-null intea
25 Packs_year 204 non-null object
26 Ps 204 non-null intea
27 Encephalopathy 284 non-null intea
28 Ascites 204 non-null intea
29 INR 204 non-null object
3e AFP 24 non-null object
31 Hemoglobin 204 non-null object
32 mMcv 204 non-null object
33 Leucocytes 24 non-null object
34 Platelets 204 non-null object
35 Albumin 204 non-null object

36 Total Bil 24 non-null object




Şəkil 2. Qaraciyər xərçəngi xəstəliyindən əldə edilən verilənlərin tipi

Verilənlərin vahid formaya gətirilməsi üçün onların ilkin emalı (və ya verilənlər bazasının təmizlənməsi prosesi) həyata keçirilmiş, əlaqəli olmayan və səpələnmiş verilənlərin təmizlənməsi bilavasitə istifadəçinin müdaxiləsi ilə yerinə yetirilmişdir. Verilənlər bazasını faydalı etmək,  verilənin işlənməsini sadələşdirmək üçün Pandas [14] və NumPy [15] kitabxanalarından istifadə edilmişdir. Kodların tətbiqi ilə müxtəlif tip verilənlər eyni tip verilənlərə çevrilmiş və bir-biri ilə əlaqəli xüsusiyyətlər təyin edilmişdir (şəkil 3).

[image: image3.png]liver_df.info()

<class "pandas.core. frame.DataFrame’>
RangeIndex: 204 entries, 6 to 263
Data columns (total 58 columns):
#  Colum Non-Null Count Dtype

Gender 204 non-null  float6d

°

1 symptoms 204 non-null  float6d
2 Alcohol 204 non-null  float6d
3 HBsAg 204 non-null  float6d
4 Heeng 204 non-null  float6d
5 HBcAb 204 non-null  float6d
6 HCVAb 204 non-null  float6d
7 Cirrhosis 204 non-null  float6d
8  Endemic 204 non-null  float6d
9 smoking 204 non-null  float6d
10 Diabetes 204 non-null  float6d
11 Obesity 204 non-null  float6d
12 Hemochro 204 non-null  float6d
13 AHT 204 non-null  float6d
14 CRI 204 non-null  float6d
15 HIV 204 non-null  float6d
16 NASH 204 non-null  float6d
17 Varices 204 non-null  float6d
18 Spleno 204 non-null  float6d
19 PHT 204 non-null  float6d
20 PVT 204 non-null  float6d
21 Metastasis 204 non-null  float6d
22 Hallmark 204 non-null  float6d
23 Age 204 non-null  float6d
24 Grams_day 204 non-null  float6d
25 Packs_year 204 non-null  float6d
2 s 204 non-null  float6d
27 Encephalopathy 204 non-null  float6d
28 Ascites 204 non-null  float6d
29 IR 204 non-null  float6d
38 AFP 204 non-null  float6d
31 Hemoglobin 204 non-null  float6d
32 MoV 204 non-null  float6d
33 Leucocytes 204 non-null  float6d
34 Platelets 204 non-null  float6d
35 Albunin 204 non-null  float6d
36 Total Bil 204 non-null  float6d
37 AT 204 non-null  float6d
38 AST 204 non-null  float6d

39 GGT 204 non-null  float64




Şəkil 3. Verilənlərin tiplərinin dəyişdirilməsi
Dəyişənlər arasında həm xətti, həm də qeyri-xətti əlaqələri tapmaq üçün Correlation heatmaps istifadə edilmişdir (şəkil 4).

  [image: image4.png]1 plt.figure(figsize=(20, 10))
2 sns.heatmap(liver_df.corr(), annot=True, cmap='Y1GnBu');
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Şəkil 4. Qaraciyər xərçəngi xəstəliklərinin verilənlər toplusu üçün Correlation heatmaps
Məlumatları normallaşdırmaq üçün minimum-maksimum miqyaslama bir və ya bir neçə xüsusiyyət sütununa tətbiq olunmuşdur. Minimum-maksimum miqyaslama əsasında verilənlərin normallaşdırılması düsturu şəkil 5-də verilmişdir.
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Şəkil 5. Qaraciyər xərçəngi məlumat dəstinin MinMaxScaler

İkinci addım: verilənlərin tədqiqi. HSK-nın verilənlər bazasında mövcud olan bütün xüsusiyyətlər təhlil olunur. Verilənlər bazasında 49 xüsusiyyət/atribut var, onlardan 23 atribut kəmiyyət xarakterli və 26 atribut keyfiyyət xarakterlidir. Birillik hesabata görə, hədəf sinfi (class) olaraq “0” (ölüm) və “1” (Yaşayan) kimi iki dəyişəndən ibarətdir. Cədvəl 1-də HCC Dataset-də mövcud olan xüsusiyyətlərin növləri göstərilmişdir.

 Cədvəl 1. Verilənlər bazasında mövcud olan xüsusiyyətlərin növləri.
	N
	Verilənlərin növləri
	Xüsusiyyətlər

	1.
	    Formal (Nominal)
	Gender, Symptoms, Alcohol, Hepatitis B, Surface Antigen, Hepatitis B e Antigen, Hepattitis B Core Antibody, Hepatitis C Virus, Antibody, Cirrhosis, Endemic, Countries, Smoking, Diabetes, Obesity, Hemochromatosis, Arterial Hypertension, Chronic Renal Insufficiency, Human Immunodeficiency Virus, Non-alcoholic Steatohepatitis, Esophageal Varices, Splenomegaly, Portal Hypertension, Portan Vein Thrombosis, Liver Metastasis, Radiological Hallmark

	2.
	İnteger
	Number of Nodules, Age at Diagnosis

	3.
	Fasiləsiz  olaraq dəyişən (Continuous)
	Grams of Alcohol per day, Packs of Cigarettes per year, International Normalised Ratio, Alpha-Fetoprotein (ng/mL), Haemoglobin (g/dL), Mean Corpuscular Volume (fl), Leukocytes (G/L), Platelets (G/L), Albumin (mg/dL), Total Bilirubin (mg/dL), Alanine transaminase (U/L), Aspartate transaminase (U/L), Gamma glutamyl transferase (U/L), Alkaline phosphatase (U/L), Total Proteins (g/dL), Creatinine (mg/dL)

	4.
	Sıra sayı (Ordinal)
	Performance Status, Encephaalograph  degree, Ascites degree


Üçüncü addım: təsnifat və xəta matrisinin meyarlarının təyini. İstifadə olunan bazada təsnifləndirməni aparmaq üçün Naive Bayes, SVM, RF və LR maşın təlimi alqoritmləri istifadə olunmuşdur. Maşın təlimində klassifikatorların aşkarlama performansının qiymətləndirilməsi vacib məsələdir. Aşkarlama performansının qiymətləndirilməsində həssaslıq (precision), tamlıq (recall), yanlış pozitiv hallar (false positive rate-FPR), doğru pozitiv hallar (true positive rate- TP), f-ölçü (f-measure), dəqiqlik (aсcuracy) meyarlarından istifadə olunmuşdur.
Həssaqlıq (P) həqiqi müsbətlərin sayı kimi müəyyən edilir və aşağıdakı kimi təyin edilir:
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Burada: Tp – doğru təsnif edilmiş, proqnozlaşdırma ilə əlaqəli verilənlərin sayı; Fp – səhv təsnif edilmiş, proqnozlaşdırma ilə əlaqəli olmayan verilənlərin sayıdır.

Tamlıq (R) həqiqi müsbətlərin sayı kimi müəyyən edilir və aşağıdakı düsturla hesablanır: 
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Burada: Fn – səhv kimi təsnif edilmiş proqnozlaşdırma ilə əlaqəli olmayan verilənlərin sayıdır.

F1-ölçü  (F1-Score) geri çağırmanın harmonik ortası kimi müəyyən edilir və aşağıdakı düsturla hesablanır:
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Dəqiqlik (Accuracy) aşağıdakı kimi müəyyən edilir:
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Yaxşı nəticələr əldə etmək və həddən artıq verilənlərin bir-biri ilə əlaqəsini tapmaq, əlaqəsiz verilənlərdən “qaçmaq” üçün model təliminin keçirilməsi mühüm addımdır. Modelin həddən artıq uyğun və uyğunsuzluğunun qarşısını almaq üçün verilənlərin 90%-i təlim verilənləri, qalan 10%-i isə test verilənləri kimi seçilmişdir. Təlim və test verilənlərinin 90/10 nisbətində seçilməsinin yaxşı klassfiikator dəqiqliyinə nail olmaq üçün kifayət edəcəyi nəzərdə tutulmuşdur. Verilənlər bazasından düzgün istifadə etmək və ən yüksək dəqiqlik nəticələrini əldə etmək üçün [14]-də təqdim edilmiş qiymətləndirmə meyarlarından istifadə edilmişdir.

Dördüncü addım: klassifikatorlar və ya maşın təlimi alqoritmlərinin tətbiqi və nəticələrin təhlili. Əldə edilən proqnozu görmək üçün müxtəlif klassifikatorlar və ya maşın təlimi alqoritmləri tətbiq olunur. Bu məqsədlə üç növ maşın təlimi alqoritmindən istifadə edilmişdir: Random Forest (RF), Vektor Maşın (SVM) və Logistik Reqressiya.

HSK-nın proqnozlaşdırılmasında maşın təlimi metodlarının tətbiqi sisteminin arxitekturası şəkil 6-da göstərilmişdir.
Nəticənin təhlili üçün Anaconda mühitində Jupiter proqramından istifadə edilmişdir. Nəticələrdə dəqiqlik əldə etmək və həmçinin verilənlərin müxtəlif təsnifatlandırıcılarda necə işlədiyini görmək üçün fərqli klassifikatorlar seçilmişdir. Cədvəl 2-də dəqiqlik matrisinin meyarlarının qiymətləri və klassifikatorların tətbiqindən alınan dəqiqlik meyarlarının nəticələri verilmişdir. Xətalar matrisi modelin düzgünlüyünü və dəqiqliyini qiymətləndirmək üçün istifadə edilən ən asan və ən sadə yanaşmalardan biridir.
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Şəkil 6. HSK-nın proqnozlaşdırılmasında maşın təlimi metodlarının  tətbiqi sisteminin  arxitekturası [16]
Cədvəl 2. Xəta Matrisi və performansın ölçülməsi
	Classifier
	  TP
	  FP
	   FN
	  TN
	    P
	    R
	  F1

	Vektor Maşın (SVM)
	    9
	  3
	    2
	   7
	  0.78


	0.70


	0.74

	Random Forest (RF)
	  10
	  1
	    1
	   9
	0.90


	0.90


	0.90



	Logistik Reqressiya(LR)
	  9
	   3
	   2
	   7
	  0.78


	 0.70


	 0.74




Klassifikatorların tətbiqindən alınan dəqiqlik meyarının qiymətinin qrafik təsviri şəkil 7-də göstərilmişdir.
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Şəkil 7. Təsnifləndirmədən əldə edilən dəqiqlik meyarının qiymətinin qrafik təsviri
Sonra k-qat çarpaz validasiyadan istifadə edərək çarpaz doğrulama aparılır və müxtəlif klassifikatorlardan əldə edilmiş dəqiqlik meyarlarının qiymətlərinin ədədi ortası götürülərək orta dəqiqlik hesablanır. Təklif edilən eksperimentin səmərəliliyini əsaslandırmaq üçün çarpaz doğrulamadan əvvəl və sonra əldə edilmiş dəqiqlik meyarlarının qiymətlərinin müqayisəsi aparılır və bu müqayisənin qrafik təsviri şəkil 8-də verilmişdir.
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Şəkil 8. Çarpaz  doğrulamadan əvvəl və sonra əldə edilmiş dəqiqlik meyarlarının müqayisəsinin qrafiki təsviri
Şəkil 8-də şaquli ox üzrə dəqiqlik meyarının qiyməti, üfüqi xətt üzrə fərqli klassifikatorlar göstərilmişdir. Çarpaz doğrulama tətbiq etdikdən sonra klassifikatorlar ilə dəqiq və sabit dəqiqliyə nail olunduğu müşahidə olunur. Random Forest ilə çarpaz doğrulama 93% dəqiqliyə və Logistik Regression ilə isə 91% dəqiqliyə nail olmaq mümkün olmuşdur.

Nəticə
Məqalədə Kaggle platforması HCC Dataset-dən istifadə etməklə HSK-nın proqnozlaşdırılması üçün maşın təlimi metodlarının tətbiqi imkanı araşdırılmışdır. 165 pasiyentin məlumatları əsasında yaradılan verilənlər bazasındakı 49 xüsusiyyət/atribut əsasında HSK-nın proqnozlaşdırılması üçün Random Forest, Vektor Maşın və Logistik Reqressiya maşın təlimi alqoritmlərindən istifadə edilmişdir.

Proqnozlaşdırma alqoritminin ilk mərhələsində bir-biri ilə əlaqəli olan xüsusiyyətlər təyin edilmiş, min-max schale əsasında 49 xüsusiyyət/atribut normallaşdırılmışdır. Baxilan 3 alqortimin tətbiqi ilə xəta matrisi qurulmuş və  xəta matrisi meyarları hesablanmışdır.  Müəyyən edilmişdir ki, xəta matrisi meyarları üzrə Random Forest ən yükəsk dəqiqliklə nəticə göstərir. Alqoritmlərin performasının qiymətləndirilməsi üçün çarpaz doğrulama aparılmış, çarpaz doğrulamadan əvvəl və sonra bu alqortmin yüksək nəticə göstərdiyi müəyyən edilmişdir.

Çarpaz doğrulama tətbiq etmədən Random Forest alqoritmi ilə ən yüksək dəqiqliyə (90,00%) nail olunmuş, çarpaz doğrulamadan sonra isə bu alqoritm 93%-lik ən yüksək dəqiqlik nümayiş etdirmişdir.

Müəlliflərin perspektiv tədqiqatları Random Forest klassifikatoruna istinad ettməklə HSK--nın proqnozlaşdırılması sisteminin işlənilməsidir. Bununla yanaşı digər maşın təlimi alqoritmləri və ANN (Artificial Neural Networks), CNN (Convolution Neural Networks) kimi dərin təlim yanaşmalarından da istifadə etməklə proqnozların dəqiqliyinin yaxşılaşdırılması istiqamətində eksperimentlərin aparılması da nəzərdə tutulur.
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РЕЗЮМЕ

В статье рассмотрены возможности использования алгоритмов машинного обучения для разработки системы прогнозирования гепатоцеллюлярной карциномы (ГЦК), являющейся наиболее распространенной среди злокачественных опухолей печени. ГЦК характеризуется набором клинических проявлений критических состояний, каждое из которых, в свою очередь определено множеством клинических признаков, данных. Для прогнозирования ГЦК на основе таких многочисленных, разнотипных и разнородных неструктурированных данных предпочтение дано методу исскусственного интеллекта – машинному обучению.  С этой целью использована база данных HCC Dataset из платформы Kaggle, состоящая из 49 признаков/атрибутов 165 пациентов. Для первичной обработки данных использованы библиотеки scikit-learn, Pandas, NumPy с использованием программы Jupiter. Проведены эксперименты на базе алгоритмов Logistic Regression, Support Vector Machine, Random Forest и представлены результаты оценки их эффективности. На основе сравнительного анализа полученных данных выявлен алгоритм с наилучшими показателями эффективности, в данном случае – алгоритм Random Forest.
Ключевые слова: гепатоцеллюлярная карцинома, интеллектуальная система прогнозирования, методы машинного обучения, параметры эффективности. 
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